(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
remove(x, .(y, z)) →+ if(=(x, y), remove(x, z), .(y, remove(x, z)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [z / .(y, z)].
The result substitution is [ ].
The rewrite sequence
remove(x, .(y, z)) →+ if(=(x, y), remove(x, z), .(y, remove(x, z)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1].
The pumping substitution is [z / .(y, z)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(='(x, y), remove(x, z), .(y, remove(x, z)))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(='(x, y), remove(x, z), .(y, remove(x, z)))
Types:
purge :: nil:.:if → nil:.:if
nil :: nil:.:if
. :: a → nil:.:if → nil:.:if
remove :: a → nil:.:if → nil:.:if
if :: =' → nil:.:if → nil:.:if → nil:.:if
=' :: a → a → ='
hole_nil:.:if1_0 :: nil:.:if
hole_a2_0 :: a
hole_='3_0 :: ='
gen_nil:.:if4_0 :: Nat → nil:.:if
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
purge,
removeThey will be analysed ascendingly in the following order:
remove < purge
(8) Obligation:
Innermost TRS:
Rules:
purge(
nil) →
nilpurge(
.(
x,
y)) →
.(
x,
purge(
remove(
x,
y)))
remove(
x,
nil) →
nilremove(
x,
.(
y,
z)) →
if(
='(
x,
y),
remove(
x,
z),
.(
y,
remove(
x,
z)))
Types:
purge :: nil:.:if → nil:.:if
nil :: nil:.:if
. :: a → nil:.:if → nil:.:if
remove :: a → nil:.:if → nil:.:if
if :: =' → nil:.:if → nil:.:if → nil:.:if
=' :: a → a → ='
hole_nil:.:if1_0 :: nil:.:if
hole_a2_0 :: a
hole_='3_0 :: ='
gen_nil:.:if4_0 :: Nat → nil:.:if
Generator Equations:
gen_nil:.:if4_0(0) ⇔ nil
gen_nil:.:if4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.:if4_0(x))
The following defined symbols remain to be analysed:
remove, purge
They will be analysed ascendingly in the following order:
remove < purge
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol remove.
(10) Obligation:
Innermost TRS:
Rules:
purge(
nil) →
nilpurge(
.(
x,
y)) →
.(
x,
purge(
remove(
x,
y)))
remove(
x,
nil) →
nilremove(
x,
.(
y,
z)) →
if(
='(
x,
y),
remove(
x,
z),
.(
y,
remove(
x,
z)))
Types:
purge :: nil:.:if → nil:.:if
nil :: nil:.:if
. :: a → nil:.:if → nil:.:if
remove :: a → nil:.:if → nil:.:if
if :: =' → nil:.:if → nil:.:if → nil:.:if
=' :: a → a → ='
hole_nil:.:if1_0 :: nil:.:if
hole_a2_0 :: a
hole_='3_0 :: ='
gen_nil:.:if4_0 :: Nat → nil:.:if
Generator Equations:
gen_nil:.:if4_0(0) ⇔ nil
gen_nil:.:if4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.:if4_0(x))
The following defined symbols remain to be analysed:
purge
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol purge.
(12) Obligation:
Innermost TRS:
Rules:
purge(
nil) →
nilpurge(
.(
x,
y)) →
.(
x,
purge(
remove(
x,
y)))
remove(
x,
nil) →
nilremove(
x,
.(
y,
z)) →
if(
='(
x,
y),
remove(
x,
z),
.(
y,
remove(
x,
z)))
Types:
purge :: nil:.:if → nil:.:if
nil :: nil:.:if
. :: a → nil:.:if → nil:.:if
remove :: a → nil:.:if → nil:.:if
if :: =' → nil:.:if → nil:.:if → nil:.:if
=' :: a → a → ='
hole_nil:.:if1_0 :: nil:.:if
hole_a2_0 :: a
hole_='3_0 :: ='
gen_nil:.:if4_0 :: Nat → nil:.:if
Generator Equations:
gen_nil:.:if4_0(0) ⇔ nil
gen_nil:.:if4_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.:if4_0(x))
No more defined symbols left to analyse.